Skip to content

vllm.entrypoints.openai.serving_responses

logger module-attribute

logger = init_logger(__name__)

OpenAIServingResponses

Bases: OpenAIServing

Source code in vllm/entrypoints/openai/serving_responses.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
class OpenAIServingResponses(OpenAIServing):

    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
        chat_template: Optional[str],
        chat_template_content_format: ChatTemplateContentFormatOption,
        return_tokens_as_token_ids: bool = False,
        reasoning_parser: str = "",
        enable_auto_tools: bool = False,
        tool_parser: Optional[str] = None,
        enable_prompt_tokens_details: bool = False,
        enable_force_include_usage: bool = False,
    ) -> None:
        super().__init__(
            engine_client=engine_client,
            model_config=model_config,
            models=models,
            request_logger=request_logger,
            return_tokens_as_token_ids=return_tokens_as_token_ids,
            enable_force_include_usage=enable_force_include_usage,
        )

        self.chat_template = chat_template
        self.chat_template_content_format: Final = chat_template_content_format

        self.reasoning_parser: Optional[Callable[[AnyTokenizer],
                                                 ReasoningParser]] = None
        if reasoning_parser:
            try:
                self.reasoning_parser = (
                    ReasoningParserManager.get_reasoning_parser(
                        reasoning_parser))
                assert self.reasoning_parser is not None
            except Exception as e:
                raise TypeError(
                    f"{reasoning_parser=} has not been registered") from e

        self.enable_prompt_tokens_details = enable_prompt_tokens_details
        self.enable_force_include_usage = enable_force_include_usage
        self.default_sampling_params = (
            self.model_config.get_diff_sampling_param())
        if self.default_sampling_params:
            source = self.model_config.generation_config
            source = "model" if source == "auto" else source
            logger.info("Using default chat sampling params from %s: %s",
                        source, self.default_sampling_params)

        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: This causes a memory leak since we never remove responses
        # from the store.
        self.response_store: dict[str, ResponsesResponse] = {}
        self.response_store_lock = asyncio.Lock()

        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: This causes a memory leak since we never remove messages
        # from the store.
        self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}

        self.background_tasks: dict[str, asyncio.Task] = {}

    async def create_responses(
        self,
        request: ResponsesRequest,
        raw_request: Optional[Request] = None,
    ) -> Union[AsyncGenerator[str, None], ResponsesResponse, ErrorResponse]:
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            logger.error("Error with model %s", error_check_ret)
            return error_check_ret

        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error

        # Handle the previous response ID.
        prev_response_id = request.previous_response_id
        if prev_response_id is not None:
            if not prev_response_id.startswith("resp_"):
                return self._make_invalid_id_error(prev_response_id)
            async with self.response_store_lock:
                prev_response = self.response_store.get(prev_response_id)
            if prev_response is None:
                return self._make_not_found_error(prev_response_id)
        else:
            prev_response = None
        # Construct the input messages.
        messages = self._construct_input_messages(request, prev_response)

        try:
            (
                lora_request,
                prompt_adapter_request,
            ) = self._maybe_get_adapters(request)
            model_name = self._get_model_name(request.model, lora_request)
            tokenizer = await self.engine_client.get_tokenizer(lora_request)

            _, request_prompts, engine_prompts = await self._preprocess_chat(
                request,
                tokenizer,
                messages,
                chat_template=self.chat_template,
                chat_template_content_format=self.chat_template_content_format,
            )
        except (ValueError, TypeError, RuntimeError,
                jinja2.TemplateError) as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(f"{e} {e.__cause__}")

        request_metadata = RequestResponseMetadata(
            request_id=request.request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata

        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[RequestOutput, None]] = []
        try:
            for i, engine_prompt in enumerate(engine_prompts):
                default_max_tokens = self.max_model_len - len(
                    engine_prompt["prompt_token_ids"])
                sampling_params = request.to_sampling_params(
                    default_max_tokens, self.default_sampling_params)

                self._log_inputs(request.request_id,
                                 request_prompts[i],
                                 params=sampling_params,
                                 lora_request=lora_request,
                                 prompt_adapter_request=prompt_adapter_request)

                trace_headers = (None if raw_request is None else await
                                 self._get_trace_headers(raw_request.headers))

                generator = self.engine_client.generate(
                    engine_prompt,
                    sampling_params,
                    request.request_id,
                    lora_request=lora_request,
                    trace_headers=trace_headers,
                    prompt_adapter_request=prompt_adapter_request,
                    priority=request.priority,
                )
                generators.append(generator)
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

        assert len(generators) == 1
        result_generator, = generators

        # Store the input messages.
        if request.store:
            self.msg_store[request.request_id] = messages

        if request.background:
            created_time = int(time.time())
            response = ResponsesResponse.from_request(
                request,
                sampling_params,
                model_name=model_name,
                created_time=created_time,
                output=[],
                status="queued",
                usage=None,
            )
            async with self.response_store_lock:
                self.response_store[response.id] = response

            # Run the request in the background.
            task = asyncio.create_task(
                self._run_background_request(
                    request,
                    sampling_params,
                    result_generator,
                    model_name,
                    tokenizer,
                    request_metadata,
                    created_time,
                ),
                name=f"create_{response.id}",
            )

            # For cleanup.
            response_id = response.id
            self.background_tasks[response_id] = task
            task.add_done_callback(
                lambda _: self.background_tasks.pop(response_id, None))
            return response

        if request.stream:
            raise NotImplementedError("Streaming responses are not supported")

        try:
            return await self.responses_full_generator(
                request,
                sampling_params,
                result_generator,
                model_name,
                tokenizer,
                request_metadata,
            )
        except Exception as e:
            return self.create_error_response(str(e))

    async def responses_full_generator(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[RequestOutput],
        model_name: str,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
        created_time: Optional[int] = None,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if created_time is None:
            created_time = int(time.time())
        final_res: Optional[RequestOutput] = None

        try:
            async for res in result_generator:
                final_res = res
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

        assert final_res is not None
        assert len(final_res.outputs) == 1
        final_output = final_res.outputs[0]

        if self.reasoning_parser:
            try:
                reasoning_parser = self.reasoning_parser(tokenizer)
            except RuntimeError as e:
                logger.exception("Error in reasoning parser creation.")
                return self.create_error_response(str(e))

            reasoning_content, content = (
                reasoning_parser.extract_reasoning_content(final_output.text,
                                                           request=request))
        else:
            reasoning_content = None
            content = final_output.text

        output = []
        if reasoning_content:
            reasoning_item = ResponseReasoningItem(
                text=reasoning_content,
                status=None,  # NOTE: Only the last output item has status.
            )
            output.append(reasoning_item)
        if content:
            output_text = ResponseOutputText(
                text=content,
                annotations=[],  # TODO
                type="output_text",
                logprobs=None,  # TODO
            )
            message = ResponseOutputMessage(
                id=f"msg_{random_uuid()}",
                content=[output_text],
                role="assistant",
                status="completed",
                type="message",
            )
            output.append(message)

        # Calculate usage.
        assert final_res.prompt_token_ids is not None
        num_prompt_tokens = len(final_res.prompt_token_ids)
        num_generated_tokens = len(final_output.token_ids)
        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        if self.enable_prompt_tokens_details and final_res.num_cached_tokens:
            usage.prompt_tokens_details = PromptTokenUsageInfo(
                cached_tokens=final_res.num_cached_tokens)
        request_metadata.final_usage_info = usage

        response = ResponsesResponse.from_request(
            request,
            sampling_params,
            model_name=model_name,
            created_time=created_time,
            output=output,
            status="completed",
            usage=usage,
        )

        if request.store:
            async with self.response_store_lock:
                stored_response = self.response_store.get(response.id)
                # If the response is already cancelled, don't update it.
                if (stored_response is None
                        or stored_response.status != "cancelled"):
                    self.response_store[response.id] = response
        return response

    def _construct_input_messages(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse] = None,
    ) -> list[ChatCompletionMessageParam]:
        messages: list[ChatCompletionMessageParam] = []
        if request.instructions:
            messages.append({
                "role": "system",
                "content": request.instructions,
            })

        # Prepend the conversation history.
        if prev_response is not None:
            # Add the previous messages.
            prev_msg = self.msg_store[prev_response.id]
            messages.extend(prev_msg)

            # Add the previous output.
            for output_item in prev_response.output:
                # NOTE: We skip the reasoning output.
                if isinstance(output_item, ResponseOutputMessage):
                    for content in output_item.content:
                        messages.append({
                            "role": "assistant",
                            "content": content.text,
                        })

        # Append the new input.
        # Responses API supports simple text inputs without chat format.
        if isinstance(request.input, str):
            messages.append({"role": "user", "content": request.input})
        else:
            messages.extend(request.input)  # type: ignore
        return messages

    async def _run_background_request(
        self,
        request: ResponsesRequest,
        *args,
        **kwargs,
    ):
        try:
            response = await self.responses_full_generator(
                request, *args, **kwargs)
        except Exception as e:
            logger.exception("Background request failed for %s",
                             request.request_id)
            response = self.create_error_response(str(e))

        if isinstance(response, ErrorResponse):
            # If the request has failed, update the status to "failed".
            response_id = request.request_id
            async with self.response_store_lock:
                stored_response = self.response_store.get(response_id)
                assert stored_response is not None
                if stored_response.status not in ("completed", "cancelled"):
                    stored_response.status = "failed"

    async def retrieve_responses(
        self,
        response_id: str,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if not response_id.startswith("resp_"):
            return self._make_invalid_id_error(response_id)

        async with self.response_store_lock:
            response = self.response_store.get(response_id)

        if response is None:
            return self._make_not_found_error(response_id)
        return response

    async def cancel_responses(
        self,
        response_id: str,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if not response_id.startswith("resp_"):
            return self._make_invalid_id_error(response_id)

        async with self.response_store_lock:
            response = self.response_store.get(response_id)
            if response is None:
                return self._make_not_found_error(response_id)

            prev_status = response.status
            if prev_status not in ("queued", "in_progress"):
                return self.create_error_response(
                    err_type="invalid_request_error",
                    message="Cannot cancel a synchronous response.",
                )

            # Update the status to "cancelled".
            response.status = "cancelled"

        # Abort the request.
        if (task := self.background_tasks.get(response_id)):
            task.cancel()
            try:
                await task
            except asyncio.CancelledError:
                logger.exception("Background task for %s was cancelled",
                                 response_id)
        return response

    def _make_invalid_id_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=(f"Invalid 'response_id': '{response_id}'. "
                     "Expected an ID that begins with 'resp'."),
        )

    def _make_not_found_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=f"Response with id '{response_id}' not found.",
            status_code=HTTPStatus.NOT_FOUND,
        )

background_tasks instance-attribute

background_tasks: dict[str, Task] = {}

chat_template instance-attribute

chat_template = chat_template

chat_template_content_format instance-attribute

chat_template_content_format: Final = (
    chat_template_content_format
)

default_sampling_params instance-attribute

default_sampling_params = get_diff_sampling_param()

enable_force_include_usage instance-attribute

enable_force_include_usage = enable_force_include_usage

enable_prompt_tokens_details instance-attribute

enable_prompt_tokens_details = enable_prompt_tokens_details

msg_store instance-attribute

reasoning_parser instance-attribute

reasoning_parser: Optional[
    Callable[[AnyTokenizer], ReasoningParser]
] = get_reasoning_parser(reasoning_parser)

response_store instance-attribute

response_store: dict[str, ResponsesResponse] = {}

response_store_lock instance-attribute

response_store_lock = Lock()

__init__

__init__(
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    return_tokens_as_token_ids: bool = False,
    reasoning_parser: str = "",
    enable_auto_tools: bool = False,
    tool_parser: Optional[str] = None,
    enable_prompt_tokens_details: bool = False,
    enable_force_include_usage: bool = False,
) -> None
Source code in vllm/entrypoints/openai/serving_responses.py
def __init__(
    self,
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    return_tokens_as_token_ids: bool = False,
    reasoning_parser: str = "",
    enable_auto_tools: bool = False,
    tool_parser: Optional[str] = None,
    enable_prompt_tokens_details: bool = False,
    enable_force_include_usage: bool = False,
) -> None:
    super().__init__(
        engine_client=engine_client,
        model_config=model_config,
        models=models,
        request_logger=request_logger,
        return_tokens_as_token_ids=return_tokens_as_token_ids,
        enable_force_include_usage=enable_force_include_usage,
    )

    self.chat_template = chat_template
    self.chat_template_content_format: Final = chat_template_content_format

    self.reasoning_parser: Optional[Callable[[AnyTokenizer],
                                             ReasoningParser]] = None
    if reasoning_parser:
        try:
            self.reasoning_parser = (
                ReasoningParserManager.get_reasoning_parser(
                    reasoning_parser))
            assert self.reasoning_parser is not None
        except Exception as e:
            raise TypeError(
                f"{reasoning_parser=} has not been registered") from e

    self.enable_prompt_tokens_details = enable_prompt_tokens_details
    self.enable_force_include_usage = enable_force_include_usage
    self.default_sampling_params = (
        self.model_config.get_diff_sampling_param())
    if self.default_sampling_params:
        source = self.model_config.generation_config
        source = "model" if source == "auto" else source
        logger.info("Using default chat sampling params from %s: %s",
                    source, self.default_sampling_params)

    # HACK(woosuk): This is a hack. We should use a better store.
    # FIXME: This causes a memory leak since we never remove responses
    # from the store.
    self.response_store: dict[str, ResponsesResponse] = {}
    self.response_store_lock = asyncio.Lock()

    # HACK(woosuk): This is a hack. We should use a better store.
    # FIXME: This causes a memory leak since we never remove messages
    # from the store.
    self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}

    self.background_tasks: dict[str, asyncio.Task] = {}

_construct_input_messages

_construct_input_messages(
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse] = None,
) -> list[ChatCompletionMessageParam]
Source code in vllm/entrypoints/openai/serving_responses.py
def _construct_input_messages(
    self,
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse] = None,
) -> list[ChatCompletionMessageParam]:
    messages: list[ChatCompletionMessageParam] = []
    if request.instructions:
        messages.append({
            "role": "system",
            "content": request.instructions,
        })

    # Prepend the conversation history.
    if prev_response is not None:
        # Add the previous messages.
        prev_msg = self.msg_store[prev_response.id]
        messages.extend(prev_msg)

        # Add the previous output.
        for output_item in prev_response.output:
            # NOTE: We skip the reasoning output.
            if isinstance(output_item, ResponseOutputMessage):
                for content in output_item.content:
                    messages.append({
                        "role": "assistant",
                        "content": content.text,
                    })

    # Append the new input.
    # Responses API supports simple text inputs without chat format.
    if isinstance(request.input, str):
        messages.append({"role": "user", "content": request.input})
    else:
        messages.extend(request.input)  # type: ignore
    return messages

_make_invalid_id_error

_make_invalid_id_error(response_id: str) -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_invalid_id_error(self, response_id: str) -> ErrorResponse:
    return self.create_error_response(
        err_type="invalid_request_error",
        message=(f"Invalid 'response_id': '{response_id}'. "
                 "Expected an ID that begins with 'resp'."),
    )

_make_not_found_error

_make_not_found_error(response_id: str) -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_not_found_error(self, response_id: str) -> ErrorResponse:
    return self.create_error_response(
        err_type="invalid_request_error",
        message=f"Response with id '{response_id}' not found.",
        status_code=HTTPStatus.NOT_FOUND,
    )

_run_background_request async

_run_background_request(
    request: ResponsesRequest, *args, **kwargs
)
Source code in vllm/entrypoints/openai/serving_responses.py
async def _run_background_request(
    self,
    request: ResponsesRequest,
    *args,
    **kwargs,
):
    try:
        response = await self.responses_full_generator(
            request, *args, **kwargs)
    except Exception as e:
        logger.exception("Background request failed for %s",
                         request.request_id)
        response = self.create_error_response(str(e))

    if isinstance(response, ErrorResponse):
        # If the request has failed, update the status to "failed".
        response_id = request.request_id
        async with self.response_store_lock:
            stored_response = self.response_store.get(response_id)
            assert stored_response is not None
            if stored_response.status not in ("completed", "cancelled"):
                stored_response.status = "failed"

cancel_responses async

cancel_responses(
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]
Source code in vllm/entrypoints/openai/serving_responses.py
async def cancel_responses(
    self,
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]:
    if not response_id.startswith("resp_"):
        return self._make_invalid_id_error(response_id)

    async with self.response_store_lock:
        response = self.response_store.get(response_id)
        if response is None:
            return self._make_not_found_error(response_id)

        prev_status = response.status
        if prev_status not in ("queued", "in_progress"):
            return self.create_error_response(
                err_type="invalid_request_error",
                message="Cannot cancel a synchronous response.",
            )

        # Update the status to "cancelled".
        response.status = "cancelled"

    # Abort the request.
    if (task := self.background_tasks.get(response_id)):
        task.cancel()
        try:
            await task
        except asyncio.CancelledError:
            logger.exception("Background task for %s was cancelled",
                             response_id)
    return response

create_responses async

create_responses(
    request: ResponsesRequest,
    raw_request: Optional[Request] = None,
) -> Union[
    AsyncGenerator[str, None],
    ResponsesResponse,
    ErrorResponse,
]
Source code in vllm/entrypoints/openai/serving_responses.py
async def create_responses(
    self,
    request: ResponsesRequest,
    raw_request: Optional[Request] = None,
) -> Union[AsyncGenerator[str, None], ResponsesResponse, ErrorResponse]:
    error_check_ret = await self._check_model(request)
    if error_check_ret is not None:
        logger.error("Error with model %s", error_check_ret)
        return error_check_ret

    # If the engine is dead, raise the engine's DEAD_ERROR.
    # This is required for the streaming case, where we return a
    # success status before we actually start generating text :).
    if self.engine_client.errored:
        raise self.engine_client.dead_error

    # Handle the previous response ID.
    prev_response_id = request.previous_response_id
    if prev_response_id is not None:
        if not prev_response_id.startswith("resp_"):
            return self._make_invalid_id_error(prev_response_id)
        async with self.response_store_lock:
            prev_response = self.response_store.get(prev_response_id)
        if prev_response is None:
            return self._make_not_found_error(prev_response_id)
    else:
        prev_response = None
    # Construct the input messages.
    messages = self._construct_input_messages(request, prev_response)

    try:
        (
            lora_request,
            prompt_adapter_request,
        ) = self._maybe_get_adapters(request)
        model_name = self._get_model_name(request.model, lora_request)
        tokenizer = await self.engine_client.get_tokenizer(lora_request)

        _, request_prompts, engine_prompts = await self._preprocess_chat(
            request,
            tokenizer,
            messages,
            chat_template=self.chat_template,
            chat_template_content_format=self.chat_template_content_format,
        )
    except (ValueError, TypeError, RuntimeError,
            jinja2.TemplateError) as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(f"{e} {e.__cause__}")

    request_metadata = RequestResponseMetadata(
        request_id=request.request_id)
    if raw_request:
        raw_request.state.request_metadata = request_metadata

    # Schedule the request and get the result generator.
    generators: list[AsyncGenerator[RequestOutput, None]] = []
    try:
        for i, engine_prompt in enumerate(engine_prompts):
            default_max_tokens = self.max_model_len - len(
                engine_prompt["prompt_token_ids"])
            sampling_params = request.to_sampling_params(
                default_max_tokens, self.default_sampling_params)

            self._log_inputs(request.request_id,
                             request_prompts[i],
                             params=sampling_params,
                             lora_request=lora_request,
                             prompt_adapter_request=prompt_adapter_request)

            trace_headers = (None if raw_request is None else await
                             self._get_trace_headers(raw_request.headers))

            generator = self.engine_client.generate(
                engine_prompt,
                sampling_params,
                request.request_id,
                lora_request=lora_request,
                trace_headers=trace_headers,
                prompt_adapter_request=prompt_adapter_request,
                priority=request.priority,
            )
            generators.append(generator)
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

    assert len(generators) == 1
    result_generator, = generators

    # Store the input messages.
    if request.store:
        self.msg_store[request.request_id] = messages

    if request.background:
        created_time = int(time.time())
        response = ResponsesResponse.from_request(
            request,
            sampling_params,
            model_name=model_name,
            created_time=created_time,
            output=[],
            status="queued",
            usage=None,
        )
        async with self.response_store_lock:
            self.response_store[response.id] = response

        # Run the request in the background.
        task = asyncio.create_task(
            self._run_background_request(
                request,
                sampling_params,
                result_generator,
                model_name,
                tokenizer,
                request_metadata,
                created_time,
            ),
            name=f"create_{response.id}",
        )

        # For cleanup.
        response_id = response.id
        self.background_tasks[response_id] = task
        task.add_done_callback(
            lambda _: self.background_tasks.pop(response_id, None))
        return response

    if request.stream:
        raise NotImplementedError("Streaming responses are not supported")

    try:
        return await self.responses_full_generator(
            request,
            sampling_params,
            result_generator,
            model_name,
            tokenizer,
            request_metadata,
        )
    except Exception as e:
        return self.create_error_response(str(e))

responses_full_generator async

responses_full_generator(
    request: ResponsesRequest,
    sampling_params: SamplingParams,
    result_generator: AsyncIterator[RequestOutput],
    model_name: str,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
    created_time: Optional[int] = None,
) -> Union[ErrorResponse, ResponsesResponse]
Source code in vllm/entrypoints/openai/serving_responses.py
async def responses_full_generator(
    self,
    request: ResponsesRequest,
    sampling_params: SamplingParams,
    result_generator: AsyncIterator[RequestOutput],
    model_name: str,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
    created_time: Optional[int] = None,
) -> Union[ErrorResponse, ResponsesResponse]:
    if created_time is None:
        created_time = int(time.time())
    final_res: Optional[RequestOutput] = None

    try:
        async for res in result_generator:
            final_res = res
    except asyncio.CancelledError:
        return self.create_error_response("Client disconnected")
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

    assert final_res is not None
    assert len(final_res.outputs) == 1
    final_output = final_res.outputs[0]

    if self.reasoning_parser:
        try:
            reasoning_parser = self.reasoning_parser(tokenizer)
        except RuntimeError as e:
            logger.exception("Error in reasoning parser creation.")
            return self.create_error_response(str(e))

        reasoning_content, content = (
            reasoning_parser.extract_reasoning_content(final_output.text,
                                                       request=request))
    else:
        reasoning_content = None
        content = final_output.text

    output = []
    if reasoning_content:
        reasoning_item = ResponseReasoningItem(
            text=reasoning_content,
            status=None,  # NOTE: Only the last output item has status.
        )
        output.append(reasoning_item)
    if content:
        output_text = ResponseOutputText(
            text=content,
            annotations=[],  # TODO
            type="output_text",
            logprobs=None,  # TODO
        )
        message = ResponseOutputMessage(
            id=f"msg_{random_uuid()}",
            content=[output_text],
            role="assistant",
            status="completed",
            type="message",
        )
        output.append(message)

    # Calculate usage.
    assert final_res.prompt_token_ids is not None
    num_prompt_tokens = len(final_res.prompt_token_ids)
    num_generated_tokens = len(final_output.token_ids)
    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )
    if self.enable_prompt_tokens_details and final_res.num_cached_tokens:
        usage.prompt_tokens_details = PromptTokenUsageInfo(
            cached_tokens=final_res.num_cached_tokens)
    request_metadata.final_usage_info = usage

    response = ResponsesResponse.from_request(
        request,
        sampling_params,
        model_name=model_name,
        created_time=created_time,
        output=output,
        status="completed",
        usage=usage,
    )

    if request.store:
        async with self.response_store_lock:
            stored_response = self.response_store.get(response.id)
            # If the response is already cancelled, don't update it.
            if (stored_response is None
                    or stored_response.status != "cancelled"):
                self.response_store[response.id] = response
    return response

retrieve_responses async

retrieve_responses(
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]
Source code in vllm/entrypoints/openai/serving_responses.py
async def retrieve_responses(
    self,
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]:
    if not response_id.startswith("resp_"):
        return self._make_invalid_id_error(response_id)

    async with self.response_store_lock:
        response = self.response_store.get(response_id)

    if response is None:
        return self._make_not_found_error(response_id)
    return response