vllm.executor.mp_distributed_executor
MultiprocessingDistributedExecutor
¶
Bases: DistributedExecutorBase
Python multiprocessing-based distributed executor
Source code in vllm/executor/mp_distributed_executor.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
_check_cuda
¶
Check that the number of GPUs is sufficient for the parallel configuration. Separate from _init_executor to reduce the number of indented blocks.
Source code in vllm/executor/mp_distributed_executor.py
_driver_execute_model
¶
_driver_execute_model(
execute_model_req: Optional[ExecuteModelRequest],
) -> Optional[List[SamplerOutput]]
Run execute_model in the driver worker.
Passing None will cause the driver to stop the model execution loop running in each of the remote workers.
Source code in vllm/executor/mp_distributed_executor.py
_driver_execute_model_async
async
¶
_driver_execute_model_async(
execute_model_req: Optional[ExecuteModelRequest] = None,
) -> List[SamplerOutput]
Source code in vllm/executor/mp_distributed_executor.py
_init_executor
¶
Source code in vllm/executor/mp_distributed_executor.py
_run_workers
¶
_run_workers(
method: Union[str, Callable],
*args,
async_run_tensor_parallel_workers_only: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> List[Any]
Runs the given method on all workers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
async_run_tensor_parallel_workers_only
|
bool
|
If True the method will be run only in the remote TP workers, not the driver worker. It will also be run asynchronously and return a list of futures rather than blocking on the results. |
False
|
Source code in vllm/executor/mp_distributed_executor.py
_start_worker_execution_loop
async
¶
_wait_for_tasks_completion
¶
_wait_for_tasks_completion(
parallel_worker_tasks: Any,
) -> None
Wait for futures returned from _run_workers() with async_run_remote_workers_only to complete.
check_health
¶
Raises an error if engine is unhealthy.