vllm.model_executor.models.modernbert
ModernBertAttention
¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
Wqkv
instance-attribute
¶
Wqkv = QKVParallelLinear(
hidden_size, head_dim, num_heads, bias=attention_bias
)
attn
instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
prefix=f"{layer_id}.attn",
attn_type=ENCODER_ONLY,
)
local_attention
instance-attribute
¶
rotary_emb
instance-attribute
¶
rotary_emb = ModernBertRotaryEmbedding(
config=config,
head_size=head_dim,
dim=head_dim,
base=rope_theta,
)
__init__
¶
Source code in vllm/model_executor/models/modernbert.py
forward
¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertEmbeddings
¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
tok_embeddings
instance-attribute
¶
tok_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__
¶
Source code in vllm/model_executor/models/modernbert.py
forward
¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertEncoderLayer
¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
layers
instance-attribute
¶
layers = ModuleList(
[
ModernBertLayer(config=config, layer_id=layer_id)
for layer_id in range(num_hidden_layers)
]
)
__init__
¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward
¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertForSequenceClassification
¶
Bases: Module
, SupportsV0Only
, SupportsCrossEncoding
Source code in vllm/model_executor/models/modernbert.py
_pooler
instance-attribute
¶
_pooler = ClassifierPooler(
model_config,
pooling=ModernBertPooler(config),
classifier=classifier,
)
model
instance-attribute
¶
model = ModernBertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "modernbert"),
)
__init__
¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward
¶
forward(
input_ids: Optional[LongTensor],
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
load_weights
¶
Source code in vllm/model_executor/models/modernbert.py
pooler
¶
pooler(
hidden_states: Tensor, pooling_metadata: PoolingMetadata
) -> Optional[PoolerOutput]
ModernBertLayer
¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
__init__
¶
Source code in vllm/model_executor/models/modernbert.py
forward
¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertMLP
¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
__init__
¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertModel
¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
hf_to_vllm_mapper
class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={"layers.": "encoder_layer.layers."}
)
__init__
¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward
¶
forward(
input_ids: Optional[LongTensor] = None,
positions: Optional[Tensor] = None,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
position_ids: Optional[LongTensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
load_weights
¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertPooler
¶
Bases: BasePooler
Source code in vllm/model_executor/models/modernbert.py
__init__
¶
Source code in vllm/model_executor/models/modernbert.py
forward
¶
forward(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/modernbert.py
ModernBertRotaryEmbedding
¶
Bases: RotaryEmbedding